
Progress Presentation
for

Molecular Genetics eXplorer
MGX 1.0

Department of Computer Science
University of Massachusetts, Boston

December 9th, 2004

©2004 MGX Team UMB, All Rights Reserved

12/09

MGX Vision

Create a computer-based teaching tool that
helps students to understand connections
among Genetics, Molecular Biology and
Biochemistry.

©2004 MGX Team UMB, All Rights Reserved

MGX Application (1)

● Three virtual biological laboratories.

● VGL, a virtual genetics lab: Investigate the
mechanism of inheritance for one trait.

● Genex, a gene exploration lab: Transcribe
and translate a DNA sequence.

 Protex, a protein exploration lab: Visualize
the structure and function of a protein.

12/09©2004 MGX Team UMB, All Rights Reserved

MGX Application (2)

● Two types of actors.

● Student(s): General Biology 111/112.

● Administrator: Professor Brian White.

● Two modes.

● Integrated.

● Stand-alone.

12/09©2004 MGX Team UMB, All Rights Reserved

MGX

Protex
Genex

VGL

12/09

Statechart after Harel, D. 1987. Statecharts: A visual formalism for
complex systems. Science of Computer Programming, 8, 231-274.

©2004 MGX Team UMB, All Rights Reserved

MGX: Development

Bring together computer codes written over
time by various teams and individuals.

Application Written By During

VGL CS students 2002-2003

GenExplorer CS students 2003-2004

Genex Prof. B. White 2004

Folding Prof. E. Bolker 2004

12/09©2004 MGX Team UMB, All Rights Reserved

MGX: Existing Codes

● Which codes shall we take?

● How shall we make use of those codes?

● For design.

Use cases (David).

● For implementation.

One-step build (Pradeep).

12/09©2004 MGX Team UMB, All Rights Reserved

Use Cases: Definition

● A case of use.

● A narrative description of the interactions
between a user and a system.

● An external or black-box view of functionality
that is supplied by a system to a user.

● Black box—What <something> does.

● White box—How <something> does it.

12/09©2004 MGX Team UMB, All Rights Reserved

Use Cases: Approach (1)

Use Case Model Design

● Jacobson et al. (1992) – First to apply the
concept of use cases to software engineering.

● Constantine and Lockwood (1999) – “Use
cases have been integrated with success into
virtually every approach of OO analysis and
design.”

12/09©2004 MGX Team UMB, All Rights Reserved

Use Cases: Approach (2)

“...teams that take time and model the
problem domain by writing use cases will plan
their programming and ultimately deliver
better systems than those that plunge directly
into coding.”

Reference: Constantine L. L., 1995. Under Pressure.
Software Development, 3 (6).

12/09©2004 MGX Team UMB, All Rights Reserved

Use Cases: Approach (3)

We have written and collected more than 133
use cases.

Application U-C Format Count
VGL XML 33
GenExplorer HTML tables 35
Genex n/a 0
Folding n/a 0
MGX (+ Protex) MS Word text 65+

Total 133+

12/09©2004 MGX Team UMB, All Rights Reserved

Use Cases: Example – MGX
UCID: ASAM.2
Name: Administrator enters VGL.

Actor: Administrator.

Pre-Condition: Administrator opens a new session or a saved session

Purpose: Administrator opens VGL as a stand-alone application.

Overview: Administrator indicates that he wants to open VGL as a
stand-alone application. MGX starts VGL as a stand-alone application.

Typical course of events:
1) Administrator indicates that he wants to open VGL.
2) MGX starts VGL as a stand-alone application.

Post-Condition: VGL is running.

12/09©2004 MGX Team UMB, All Rights Reserved

Use Cases: Example – VGL
<UseCase>
 <Characteristic>
 <ID>33</ID>
 <Name>Turn off Balloon Help</Name>
 <Actor>Student</Actor>
 <GoalInContext>Turn off Balloon Help</GoalInContext>
 <PreCondition>Balloon Help is on</PreCondition>
 <PostCondition>Balloon Help is off</PostCondition>
 <TriggerEvent>Actor selects Balloon Help</TriggerEvent>
 </Characteristic>
 <Main>
 <Step value="1">
 <Name>Student</Name>
 <Action>selects Balloon Help from Help Menu</Action>
 </Step>
 </Main>
 <Info>
 <Author>Chung Ying Yu</Author>
 <ModifiedBy>David Portman</ModifiedBy>
 </Info>
</UseCase>

12/09©2004 MGX Team UMB, All Rights Reserved

Use Cases: Summary

● We have compiled use cases taken from a
variety of sources, including the documents
written by former CS student teams.

● We have written many new use cases of our
own.

● We are discussing how to employ use cases
effectively, as part of the software modelling
and design process.

12/09©2004 MGX Team UMB, All Rights Reserved

One-Step Build: Definition

A one-step build is a single script that

● Does a full checkout from scratch.

● Compiles every line of code.

● Creates all executables, installation
packages, and final media.

12/09©2004 MGX Team UMB, All Rights Reserved

One-Step Build: Why?

A one-step build improves the developers'
efficiency by

● Automating the build process.

● Handling all sorts of media in one step.

● Improving consistency and repeatability.

● Saving time and money (especially during
the final stages of a project).

12/09©2004 MGX Team UMB, All Rights Reserved

One-Step Build: CRISP

● Complete: recipe list of all ingredients.

● Repeatable: version control.

● Informative: radiates valuable info.

● Schedulable: complete and repeatable.

● Portable: machine-independent.

12/09©2004 MGX Team UMB, All Rights Reserved

One-Step Build: Tools

Tools for doing a one-step build compile only
those modules (of source code) that change.

● make/gnumake.

● nmake – a make tool developed by Bell
Labs, licensed by Lucent®.

● jam – an open-source software build tool
maintained by Perforce Software, Inc.

● ant – (Ant) a Java-based build tool licensed
by the Apache Software Foundation.

12/09©2004 MGX Team UMB, All Rights Reserved

Ant: Why?
● Ant is suitable for cross-platform applications,

such as those written in Java.

● Ant is state-of-the-art – its configuration files
are based on XML.

● Each file holds a project and a target tree
for executing tasks.

● Each file task is run by an object.

● Each file-task object implements a
particular interface and OS.

12/09©2004 MGX Team UMB, All Rights Reserved

Ant: A Simple Build File
● Build files are written in XML.

● Each XML build file contains

● One project.

● One [default] target (required).

Build File
 <project >
 <target>
 </target>
 </project>

12/09©2004 MGX Team UMB, All Rights Reserved

Ant: Example
<project name="MGX" default="run">
 <target name="compile" description="Compiles the code">
 <javac srcdir="src_1/" destdir="bin/" />
 </target>

 <target name="jarfile" depends="compile"
 description="makes jar file">
 <jar destfile="bin/MGX.jar">
 <manifest>
 <attribute name="MainClass" value="FoldingWindowGUI" />
 </manifest>
 <fileset dir="bin/" />
 </jar>
 <move file="bin/MGX.jar" todir="." />
 </target>

 <target name="run" depends="jarfile" description="run MGX">
 <java jar="MGX.jar" fork="true" />
 </target>
</project>

12/09©2004 MGX Team UMB, All Rights Reserved

Ant: <project>
A <project> has 3 attributes and a set of
properties.

name name of the <project>.

default target set of tasks [required].

basedir directory path.

<project name="MGX" default=run basedir="." >
 <description>
 build file for MGX project
 </description>
 <! set global properties for this build >
 <property name="src" location="src"/>
 <property name="build" location="build"/>
 ...
</project>

12/09©2004 MGX Team UMB, All Rights Reserved

Ant: <target>
A </target> has attributes.

name name of this </target>.

depends a list of more </target>s.

if name of property to set.

unless name of property not to set.

description function of this </target>.

<target name="compile" description="Compiles
the code">

...
</target>

12/09©2004 MGX Team UMB, All Rights Reserved

Ant: </target>

A target can depend on (many) other targets.

<target name="jarfile" depends="compile"
description="makes jar file">

...
</target>

12/09©2004 MGX Team UMB, All Rights Reserved

Ant: Task

● A Task is executable code.

● All Tasks have a common structure.

<name attribute1="value1" attribute2="value2"
... />

12/09©2004 MGX Team UMB, All Rights Reserved

Ant: Types of Task

● Built-in.

● Optional.

<jar destfile="bin/MGX.jar">
 <manifest>
 <attribute name="MainClass"
 value="FoldingWindowGUI" />
 </manifest>
 <fileset dir="bin/" />
</jar>
<move file="bin/MGX.jar" todir="." />

12/09©2004 MGX Team UMB, All Rights Reserved

One-Step Build: Summary

● We will perform a one step build

● At regular time intervals

● Including all source codes and documents.

● Ant is a good choice as a tool for performing
the one-step build.

12/09©2004 MGX Team UMB, All Rights Reserved

Thank You

12/09©2004 MGX Team UMB, All Rights Reserved

